Comparisons of general linear groups and their metaplectic coverings II
نویسندگان
چکیده
منابع مشابه
Abelian coverings of finite general linear groups and an application to their non-commuting graphs
In this paper we introduce and study a family An(q) of abelian subgroups of GLn(q) covering every element of GLn(q). We show that An(q) contains all the centralizers of cyclic matrices and equality holds if q > n. For q > 2, we obtain an infinite product expression for a probabilistic generating function for |An(q)|. This leads to upper and lower bounds which show in particular that c1q −n ≤ |A...
متن کاملAutomorphic Forms and Metaplectic Groups
In 1952, Gelfand and Fomin noticed that classical modular forms were related to representations of SL2(R). As a result of this realization, Gelfand later defined GLr automorphic forms via representation theory. A metaplectic form is just an automorphic form defined on a cover of GLr, called a metaplectic group. In this talk, we will carefully construct the metaplectic covers of GL2(F) where F i...
متن کاملOn subgroups of topologized fundamental groups and generalized coverings
In this paper, we are interested in studying subgroups of topologized fundamental groups and their influences on generalized covering maps. More precisely, we find some relationships between generalized covering subgroups and the other famous subgroups of the fundamental group equipped with the compact-open topology and the whisker topology. Moreover, we present some conditions unde...
متن کاملWhittaker Functions on Metaplectic Groups
The theory of Whittaker functions is of crucial importance in the classical study of automorphic forms on adele groups. Motivated by the appearance of Whittaker functions for covers of reductive groups in the theory of multiple Dirichlet series, we provide a study of Whittaker functions on metaplectic covers of reductive groups over local fields. Thesis Supervisor: Benjamin Brubaker Title: Assi...
متن کاملcharacterization of projective general linear groups
let $g$ be a finite group and $pi_{e}(g)$ be the set of element orders of $g $. let $k in pi_{e}(g)$ and $s_{k}$ be the number of elements of order $k $ in $g$. set nse($g$):=${ s_{k} | k in pi_{e}(g)}$. in this paper, it is proved if $|g|=|$ pgl$_{2}(q)|$, where $q$ is odd prime power and nse$(g)= $nse$($pgl$_{2}(q))$, then $g cong $pgl$_
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Representation Theory of the American Mathematical Society
سال: 2001
ISSN: 1088-4165
DOI: 10.1090/s1088-4165-01-00110-8